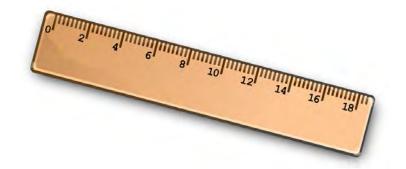
エコハウスのウソホント

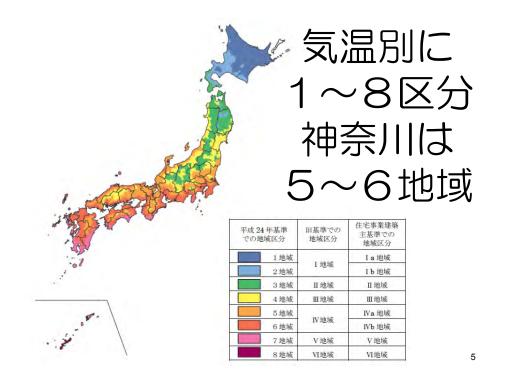
建てた後でガッカリしない 家族がハッピーな家を考える

東京大学大学院工学系研究科建築学専攻

前真之

1

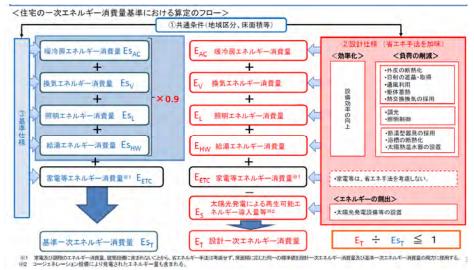

【最終エネルギー消費の推移】 3部門計 1990-2010 1.08倍 エネルギー消費が増えている 16000 1990-2010 14000 運輸部門 1.07倍 12000 1990-2010 .35倍 6000 4000 1990-2010 產業部門 2000 0.94倍


断熱のみ規制 省エネ基準 1980年/1991年/1999年

一次エネルギー規制へ

2012年06月 ゼロエネ 2012年12月 低炭素認定 2013年10月 改正省エネ

モノサシは1つ1次エネ消費量



http://house.app.lowenergy.jp/

住宅全用途の1次エネ総量に規制をかける

省エネ性能の向上に向けた取組のイメージ ● 多様で裾野が広く、技術力に差のある建築業界においては、単一の省エネ基準によ 関係者全員が満足すべきベースとかる其準し、少エさ世代の中上を経済する主義連 トップレベル ゼロ·エネルギー住宅(2012) より高いレベル [補助制度等により支援] (ゼロ・エネルギー住宅) 誘導基準 (2)性能向上の 事業主基準(2009) 誘導 見渡し 低炭素認定(2012 見直し (便宅ローン減税や容積緩和等により支援) (認定状況を踏まえ、必要に応じ水準を見直し) 深濃基準 標準-10%レベル -(課定低炭素住宅・健築物:H24年時点の標準-10%) (トップランナー基準:H20年時点の標準-10% ボトムアップ 省エネ基準(2013 エベースとなる 省エネルギー 細感しベル 100% (地理(HII)外皮十些摩拉堡 基準 規模に応じて段階的に維務化 新豪住宅において [中小工務店向けに省エネ施工技術向上のための講習を実施] ※ H11基準に対し、設備 5~6割程度と推計 (省エネ基準の達成状況等を踏まえ、水準を検証) 機関の特額面トにより 15~25%程度省エネ 共運物線 ルギー水準が向上 (一次エネルギー消費量) 全ての規制・インセンティブが1次エネルギーベースに

がっかりしない家づくりのために

エネルギーは大事です

住宅の省エネは日本のため世界のため 何よりみなさんの家族の幸せに絶対必要です

家を新築した人500人に聞きました新築した時の2大がっかりは0000と000

エネルギーのウソ 大きなPVを載せればOK? 冷房を減らすのが一番省エネ?


高気密・高断熱のウソ 人間は寒さに強い? 周りの空気さえ暖かければ快適? 断熱・気密はいらない?アブナイ?高い? 省コスト 快適・健康 → 省エネ → 省CO2

家族のため

エネルギーの恩恵と コストのバランス 何より快適で 健康的な住まいを!

生活が楽に楽しく

日本のため

化石燃料の消費低減 ↓ 海外への依存低減 外貨流出の抑制

地球のため

温暖化軽減のため絶対必要 ただし 排出権取引は外貨を流出させ 日本を苦しめるだけ

10

エコハウスが必要な理由

地球温暖化の緩和

日本の貿易赤字削減

家庭での光熱費節約

最近家を買った人はどう思っているのか?

性能に対する重視度合いがどのように変化していったか?

設計者から勧められた性能

最終的に重視した性能

劣化しにくいこと。 (シロアリ対策や結構対策など)

給排水管やガス管などの 設備配管の維持管理がしやすいこと。

冬は暖かく、夏は涼しい、 快適な室内環境が実現されること。

住宅で使用するエネルギー (電気・ガス・灯油) が少ないこと。 (省工本性能)

太陽光発電を搭載し、 自宅で発電できること。

自然エネルギーを活用していること。 (太陽光発電を除く)

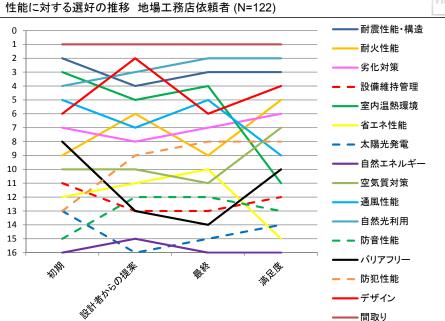
16の住宅性能

化学物質を放散しない自然達材や 換気装置の利用により、室内の空気が きれいに保たれていること。

自然の風を室内に良く取り入れられ、 涼しく過ごせること。(通風利用)

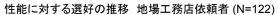
自然光(太陽の光)を 室内に良く取り入れられること。

住宅性能表示制度10項目 +通風性能 +省エネ性能 +PV利用 +PV以外の自然エネルギー利用 +デザイン・間取り

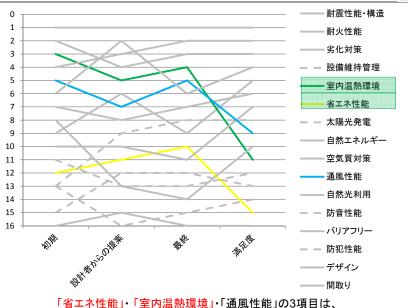

Mae

__3

初めに重視していた性能


性能に対する満足度

Mae


プラン・光・構造 こだわって 大満足

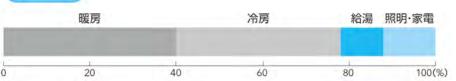
17

温熱環境 省エネ=光熱費 2大がっかり

18

よい住宅の王道

重視度の高さに比べて、満足度が低い傾向です。


PVほどほど

建物しっかり作り設備ちゃんと選ぶ

図1「冷暖房がエネルギーを使う」と多くの人が思っている

エネルギーを一番使っていると思う用途のアンケート結果。 温暖なIV地域 (東京など、P93参照) で調査した。 東京理科大学の井上隆研究室のデータを引用した

6地域 4人家族

暖房 16G 冷房 5G 換気 4G 照明 11G 給湯 27G エコジョーズ(JIS 90.5%)の省エネカ(6地域)

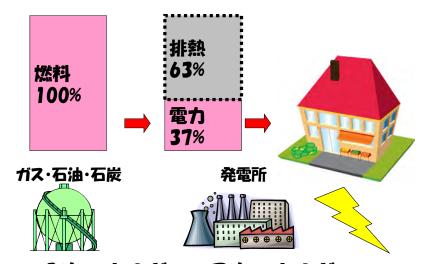
ガス給湯機(効率入力せず) 27.6GJ エコジョーズ(JIS90.5%) 22.0GJ

無印 ガス瞬間式

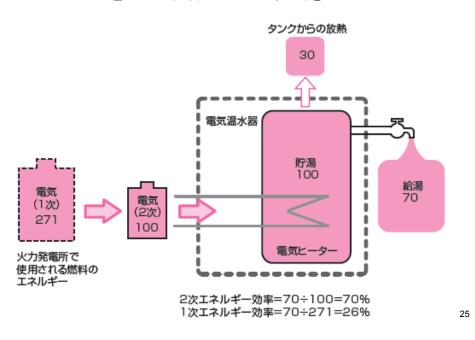
ガス瞬間式 エコジョーズ

当エネカ

27.6 - 22.0 = 5.6 GJ


電気温水器の省エネカ(6地域)

ビーター式 電気温水器の 消費1次エネ 59.9GJ


27.6 - 59.9 = -32.3 GJ

発電するのに燃やす燃料=1次エネルギー

1次エネルギー 2次エネルギー

電気温水器が「ダメ絶対」な理由

電気で熱を作るなら 必ず ヒートポンプ

26

電気で給湯するなら「必ず」ヒートポンプ

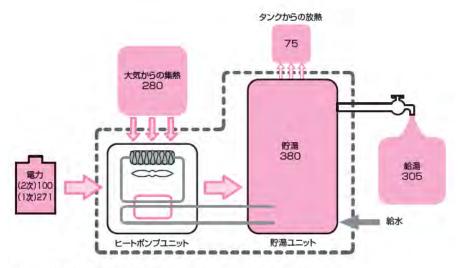



図 9 自然冷媒ヒートポンプ式電気給湯機の 2 次エネルギーフロー (盛岡、APF3.5 程度の機種「省エネモード」における年平均の推定値)

ヒートポンプは偉いんじゃない 要領がいい

エコキュート(JIS3. O)の省エネカ(6地域)

ヒートポンプ 電気温水器の 消費1次エネ 19.4GJ

27.6 - 19.4 = 8.2 GJ

エコジョーズ・エコキュートはマストアイテム

5.6 GJ

8.2 GJ

30

ヒートポンプなら1次エネでも省エネ!

よい住宅の王道

PVほどほど 建物しっかり作り 設備ちゃんと選ぶ

31

6地域 4人家族

暖房 16G

冷房 5G

換気 4G

照明 11G

給湯 27G

よい住宅の王道

PVほどほど 建物しっかり作り 設備ちゃんと選ぶ

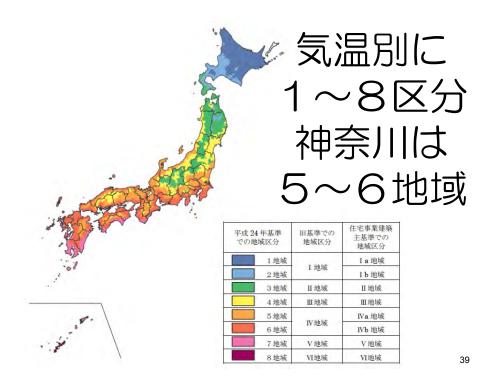
34

人間は知恵なしには寒さに耐えられない

暖かい空気を留める 高気密

+

表面温度を高く保つ高断熱

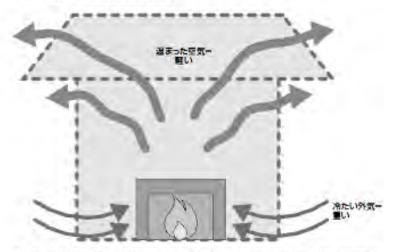

暖気を留められない 低気密 + 表面温度が低いまま

低断熱

「あったかい」 思考停止の地域ほど 要注意

38

質の高い温熱環境 ↓ 空気(対流) 空気(放射) 両方が適温であること


暖房時も人体は「放熱」している

放勢がちょうどいい具合になるように空気や 壁の温度を整えるのが「暖房」 運動エネルギーになるのは 摂取エネルギーの 20%程度にすぎない 残り80%の熱を体から 放出しなければ 体はオーバーヒートしてしまう 伝導による放熱

体の熱の失われ方

蒸散 3割 対流 3割 4割 放射

図1 暖房すると冷気が入り込む

住宅内における暖気と冷気。気害を取らない場合、暖房器具(中央の暖炉の絵)から出た暖気は 上部の開閉から逃げてしまう。その分だけ冷気を下から吸い込むので、腹房するほど等くなる

家族みんなが 幸せに暮らせる家を 手に入れましょう

