②清掃工場における排熱利用の現状と今後の課題

森谷昭司

――はじめに

正敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。 匹敵する量の増加をみたことになる。

ルートが衰退し、大量の紙がでみとして排出さの影響で古紙の価格が暴落したため古紙の回収のかの組成の経年変化等から、情報化、〇A化でみの組成の経年変化等から、情報化、〇A化でみ急増の要因は、にわかに特定できないが、

れたことが大きいと見られている。このように、れたことが大きいと見られている。このように、既知四十年代初期のごみは、厨芥化している。昭和四十年代初期のごみは、厨芥ー・カーリー/キログラムと低かったが、最近では、紙、プラスチックの含有が増え、発熱量は二千キロカロリー/キログラムを超えるほど高くなっている。このため、ごみ発熱量上昇の影響を受けてる。このため、ごみ発熱量上昇の影響を受けてる。このため、ごみ発熱量上昇の影響を受けてる。このため、ごみ発熱量上昇の影響を受けてる。このため、ごみ発熱量上昇の影響を受けてる。このため、ごみ発熱量上昇の影響を受けてる。このため、ごみ発熱量と関いる現状である。

り経済性と省エネルギー性に優れている。生する焼却排熱は次のような優れた特徴を有する都市の貴重なエネルギー源でもある。都市の貴重なエネルギー源でもある。しかし約二千キロカロリー/キログラムといしかし約二千キロカロリー/キログラムとい

②でみ焼却熱は、その生産に原油などの新たな

た供給が可能である。ルギー価格に影響されず、長期にわたり安定し一次エネルギーを必要としないので、一次エネ

よる冷熱製造等多用途に活用できる。利用できるため、発電、給熱、吸収式冷凍機にで発生した熱を廃熱ボイラで吸収し蒸気としてに利用ポテンシャルが高いことである。焼却炉更に、ごみ焼却排熱の特徴をあげれば、第一

蒸気条件を低く抑えざるを得ないこと、③ごみ②排ガス中に腐食性ガスを多く含むことから、に清掃工場が熱需要地から離れて立地している、反面、ごみ焼却排熱を利用する場合、①一般

—今後の課題 —ごみ焼却排熱利用の現状—はじめに

が未利用であるのが現状である。 より排熱利用を行っているものの、 東京都においても発電、近隣施設への給熱等に 熱量を制御できない等の制約がある。このため、 焼却が目的であるので、熱負荷に追従して発生 大部分の熱

口

となっている。 上の主要施策の一つとして、急施を要する課題 ネルギーの活用は、環境政策やエネルギー政策 題 あるいは省エネルギーの観点から未利用エ)かしながら、炭酸ガスによる地球温暖化問

めにも、 にわたり安定した清掃事業の運営を確保するた ギーセンターとして位置づけ、社会的役割を拡 く求められているところである。 かかる背景において、清掃工場を地域エネル イメージアップを図ることにより、 でみ焼却排熱利用の拡大は、 今、 大き 将来

こみ焼却排熱利用の現状

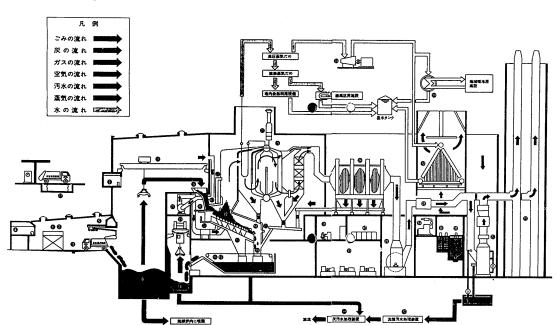
している。どみ焼却時の発生熱量はどみートン の焼却能力の関係から、この内の約二百八十万 トンを表―1の十四カ所の清掃工場で焼却処分 **ごみの年間発生量は、前述したように昭和六十** を例に取ると、焼却処分することが可能な可燃 二年度で年間三百五十万トンである。清掃工場 東京都が清掃事業を行っている都内二十三区

ると、

七〇%である。

回収できなかった

熱損失の内、最も大きいのは排ガ


当たりの発生量を二ギガカロリー とすると、年間約五千六百テラカ

される。 落ち、コンベアで灰バンカに送出 焼却残灰は、炉下部の冷却水槽に により順次乾燥されて燃焼する。 投入されたごみは、火格子(ストー ホッパに投入される。焼却炉内に れ、クレーンで焼却炉上部の投入 されたでみはでみバンカに貯蔵さ カ)上を移動しながらごみ焼却熱 になっている。ごみ収集車で搬入 清掃工場の内部は図 -1のよう

場にはボイラを設置していない。 設年度の古い江戸川及び北清掃工 の仕様を表―2に示す。なお、建 各清掃工場のボイラ及びタービン 年度の熱バランス実績を図―2に、 されたボイラにより回収される。 全清掃工場を合計した昭和六十三 図―2によりその概要を説明す でみ焼却排熱は、

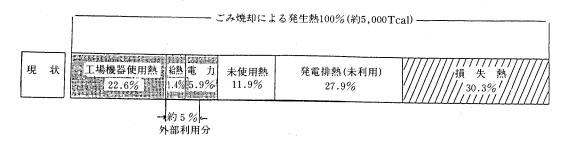
炉上部に設置

ボイラで回収できた熱量は

図—1 清掃工場フローシート

表一1 東京都清掃工場一覧

工場名		期 竣功	敷地面積	建設費	炉型式 注 3	設計最高 発熱値	規模 (炉基数)	焼却能力 注 4	エネルキ 発電能力	デーの利用 給熱能力	利便施設
	昭和	昭和	m²	百万円		kcal/kg		t/日	kW		
江戸川	39.12	41.10	19,704	1,437	タクマ式 SC型		600 t /24H (200t × 3)	I 405		温水 9 注1	区立くつろぎの家
北	41. 7	44. 3	10,470	1,681	フェルント式	1,200	600t/24H (300t × 2)	400		温水 6	区立老人いていの家
練馬	41.6	44. 3	15,763	2,069	デ・ロール式	1,500	600t/24H (300t × 2)	430	1,500		5 見原台温水プール 図 3 立三原台児童館 図立 三原台敬老館
世田谷	41.10	44. 3	27,846	3,136	デ・ロール式	1,500	900t/24H (300t × 3)	645	2,500		5 区立老人休養ホーム & じみ荘 区立身障者が 設 世田谷美術館
千歳	42.10	46. 3	17,062	2,285	タクマ式 H型	1,500	600t/24H (300t × 2)	430	1,700		5 区立千歳温水プーパ 7 (温水プール、老人を 養室、トレーニング室
大井	45.10	48. 9	53,767	5,737	デ・ロール式	1,800	1,200t/24F (300t × 4)	H 1,080	2,500		5区立東品川敬老会館)区立東品川文化センター 体育施設
多摩川	46. 4	48.11	26,948	2,997	タクマ式 H型	1,900	600t/24H (300t × 2)		2,000) 区立矢口区民センター 3 (温水プール、保育園、そ 人福祉施設、身体障害児 (者) 施設、青年の家等)
江東	45.10	49. 3	86,738	9,339	タクマ式 H型	,	1,800 t /24 (300t × 6)	•	15,000		5 都立夢の島体育館 1 立夢の島いこいの (老人施設・身障者が 設) 熱帯植物館
板橋	46. 7	49.12	44,424	4,548	フェルント式	1,900	1,200 t /24 (300t × 4)		3,200		5 区立高島平福祉センタ・ 6 区立温室植物園 区 高島平温水プール
葛飾	48.12	51.12	42,311	14,842	マルチン式	2,500	1,200t/24I (400t × 3)		12,000		2 区立水元区民センタ - 5 (区民館、老人いこいの 温水プール、体育館)
足立	49. 4	52. 9	37,103	15,623	デ・ロール式	2,500	1,000t/24I (250t × 4)		6,000	-) 区立竹の塚温水プール) 区立老人会館、区立 身障害者福祉センター 区立東伊興児童館
杉並	53. 4	57.12	36,958	17,737	フェルント式	2,100	900t/24H (300t × 3)		6,000		4 区立高井戸市民センタ ((温水プール 、老人 祉センター、地域区 センター)
光が丘 注 2			23,690	10,513	マルチン式	,	300t/24H (150t × 2)		4,000	高温水 1.5	1 旭町南地区区民館 5 (児童温水プール、f 0 育館、敬老館)
大 年	_	平成	02.017	19,824	HN型		(200t × 3)		12,000		. —
田二		2.3	92,017	32,570	日立造船式 熱分解熱焼炉 灰熔融炉付	3,500	600t/24H (200t × 3)		15,000	_	
目黒 建設中	62. 9	3.3 (予定)	,	17,988	フェルント式	2,800	600t/24H (300t × 2)		11,000	温水 6 高温水 3.5	


注1.温水及び蒸気の単位はt/H、高温水(135 $^{\circ}$ C)および低温水(45 $^{\circ}$ C)の単位はGcal(ギガカロリー) = 100万kcal/Hである。

^{2.} 光が丘の正式名称は、練馬清掃工場光が丘工場

^{3.} 炉型式、タクマ式 (日本) フェルント式 (デンマーク)、デ・ロール式 (スイス)、マルチン式 (西ドイツ)

^{4.} 焼却能力は、現在のゴミ質を焼却した場合における能力である。

図一2 清掃工場熱バランス (全工場)

	· 注	连工場機器使用熱。給熱電力 22.6%。 1.4% 5.9%	給	熱 (約50万世帯) 39.8%	//////////////////////////////////////

注)・蒸気1Ton当りの利用可能熱量は0.5Gcalとした。

・1世帯の年当りの冷暖房・給湯による熱使用量は4.25Gcalとした。

・1Tcal=1,000 Gcal, 1Gcal=1,000,000 Kcal ・発電量:約380,000,000 KwH/年 Kwh

表一2 清掃工場ボイラ・タービン仕様

	ボ	タービン					
形式	容量	圧力	温度	形式	圧力	温度	真空度
	t/h	kg∕cπ²	$^{\circ}\!\mathbb{C}$		kg∕cm²	$^{\circ}\! \mathbb{C}$	又は背圧
自然循環	33 × 2	17	206	背圧	12	192	0.3
自然循環	33× 3	17	206	背圧	10	138	0.3
強制循環	23.4× 2	16	260	背圧	12	260	0.5
自然循環	31.5× 4	16	220	背圧	10	191	0.3
強制循環	31.0 × 2	23	270	背圧	17	250	0.5
強制循環	27.8× 6	23	270	復水	17.5	250	539
自然循環	28.9× 4	20	214	背圧	12	191	0.3
自然循環	58.8× 3	23	280	復水	17	273	576
自然循環	39.5 × 4	19	211	背圧	14	197	0.3
自然循環	36 × 3	26	320	復水	19	275	539
自然循環	30 × 2	21.5	280	復水	19	275	547
自然循環	35 × 3	30	300	復水	25	295	555
自然循環	43.8× 3	30	300	復水	25	295	570
自然循環	50.8× 2	29.8	300	復水	23.5	295	570
	自然循環自然循環自然循環環境制制循環環境制制循環環境的影響。由自由自由自由自由的影響。	形式 容量 t/h 自然循環 33×2 自然循環 33×3 強制循環 23.4×2 自然循環 31.5×4 強制循環 27.8×6 自然循環 28.9×4 自然循環 39.5×4 自然循環 36×3 自然循環 30×2 自然循環 35×3 自然循環 43.8×3	t/h kg/cn² 自然循環 33×2 17 自然循環 33×3 17 強制循環 23.4×2 16 自然循環 31.5×4 16 強制循環 31.0×2 23 強制循環 27.8×6 23 自然循環 28.9×4 20 自然循環 39.5×4 19 自然循環 36×3 26 自然循環 30×2 21.5 自然循環 35×3 30 自然循環 43.8×3 30	形式 容量 圧力 温度 t / h kg / cm² ℃ l 4 / l 6 / l 4 / h kg / cm² ℃ l 4 / l 6 / l 4 / l 6 / l	形式 容量 t/h 压力 kg/cm² 温度 °C 形式 十分 自然循環 33×2 17 206 背圧 自然循環 33×3 17 206 背圧 強制循環 23.4×2 16 260 背圧 自然循環 31.5×4 16 220 背圧 強制循環 31.0×2 23 270 資水 自然循環 27.8×6 23 270 復水 自然循環 28.9×4 20 214 背圧 自然循環 58.8×3 23 280 復水 自然循環 39.5×4 19 211 背圧 自然循環 36×3 26 320 復水 自然循環 30×2 21.5 280 復水 自然循環 35×3 30 300 復水 自然循環 43.8×3 30 300 復水	形式 容量 圧力 温度 形式 圧力 kg/cm² ℃ kg/cm² 12 自然循環 33×2 17 206 背圧 12 自然循環 33×3 17 206 背圧 10 強制循環 23.4×2 16 260 背圧 12 自然循環 31.5×4 16 220 背圧 10 強制循環 31.0×2 23 270 背圧 17 強制循環 27.8×6 23 270 復水 17.5 自然循環 28.9×4 20 214 背圧 12 自然循環 58.8×3 23 280 復水 17 自然循環 39.5×4 19 211 背圧 14 自然循環 36×3 26 320 復水 19 自然循環 30×2 21.5 280 復水 19 自然循環 35×3 30 300 復水 25 自然循環 43.8×3 30 300 復水 25	形式 容量 圧力 温度 形式 圧力 温度 kg/cm² °C

力に交換される熱が六%である。 ○度程度と高いことによるが、最新の清掃工場 ○度程度と高いことによるが、最新の清掃工場 熱損失としてはボイラ壁、炉壁からの放熱、焼 熱損失としてはボイラ壁、炉壁からの放熱、焼 熱損失としてはボイラ壁、炉壁からの放熱、焼 熱原保有熱量等がある。ボイラで回収された 熱の利用内訳は、二三%(発生熱量に対して、 大の大力ででは、さらに排ガス温度を下げるため耐触性を 大の大力ででは、こ三%(発生熱量に対して、 は、塩化水素等に は、塩化水素等に ないで変換される熱が六%である。

な排熱である。

ま復水されており、二八%が発電後の利用可能の内、一二%の熱がボイラで発生した蒸気のまキロリットル)が現在未使用となっている。とキニ百テラカロリー/年、石油換算で二十二万千二百テラカロリー/年、石油換算で二十二万

→ 排熱利用による発電

発電機を設置している。

発電機を設置している。

発電機を設置している。

発電機を設置した大阪市の西淀清掃工場が最い方のの、東京都においては、昭和四十四年、初である。東京都においては、昭和四十四年、初である。東京都においては、昭和四十四年、これ以後建設した清掃工場については、欧州では比でみ焼却排熱を利用した発電は、欧州では比

ただ、昭和五十年以前に建設した清掃工場にただ、昭和五十年以前に建設した清掃工場になっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっているため、発電出力が小さいものとなっている。

昭和五十一年に逆送電が可能になり、その後、 電力会社が余剰電力を買ってくれるようになっ たため、昭和五十一年以降に建設された清掃工 場の大部分は、余剰蒸気の全量を発電に使用す る設計となっており、効率の良い復水タービン を採用しているので、発電出力が大きくなって でいるため単純な比較はできないが、練馬清掃 ているため単純な比較はできないが、練馬清掃 工場と同一焼却規模(日量六百トン)の目黒清 掃工場(建設中)における発電出力は一万一千 掃工場の建設中)における発電出力は一万一千

現在、東京都で発電機を設置している清掃工場正場では約六階和六十二工場)の発電出力合計は八万三千四百kWであるが、昭和六十三年度には五万六千四四億円の収入を得ている。また、清掃工場所内で制工のであるが、昭和六十三年度には五万六千四円のであるが、昭和六十三年度には五万六千四円のであるが、昭和六十三年度には五万六千四日に、東京都で発電機を設置している清掃工場で、東京都で発電機を設置している清掃工

気復水器を使用しているため真空度を高められて五%、復水タービンを設置している工場でもで五%、復水タービンを設置している工場でもで五%、復水タービンを設置している工場でもで五%、復水タービンを設置している工場でもで五%、②清掃工場の立地上の理由から空冷式蒸とと、③清掃工場の立地上の理由から空冷式蒸いであるが、背圧タービンを設置している工場でも、のであるが、背圧タービンを設置している工場のであるが、背圧タービンを設置している工場のであるが、背圧タービンを設置している工場のであるが、背圧タービンを設置している工場のであるが、背圧タービンを設置している工場のであるが、

発電をしていることになる。
ら、復水タービンでは、所内使用に対し三倍のン当たりの電力使用量は百kWh前後であるかビンで約百二十kWhである。なお、ごみート発電量は復水タービンで約三百kWh、背圧ター発電量は復水タービンで約三百kWh、背圧ター

ないこと等による。

❷─近隣施設への給熱

を用いている。 給熱方式としては、温水直送または高温水方式植物園、老人福祉施設等へ給熱を行っている。 ての清掃工場で、近隣の区民センター、プール、東京都においては、表―1に示すようにすべ

ポンプで近隣施設に搬送して温水を直接給湯等換器で蒸気により七○~八○度の温水を造り、温水直送方式は、清掃工場内に設置した熱交

高温水方式とする方針である。 ら、今後設置していく給熱設備については主に て冷房にも使用出来るなど利便性が高いことか 場内に設置した熱交換器で一三○度程度の高温 水方式は、暖房はもちろん吸収式冷凍機を用い を循環させて、熱のみを送る方式である。 水を造り、近隣施設内に設けた熱交換器との間 に使用する方式である。高温水方式は、清掃工 高温

却排熱量に対する給熱量の割合は一・五%程度 館、 過ぎない。江東清掃工場では、夢の島総合体育 は表している。 有効な利用先とはなり得ないことを、 物園等を清掃工場近隣に設置しても、 である。したがって、 を持っているにもかかわらず、当工場のごみ焼 ると、近隣施設への熱供給量は僅か○・五%に しかし、 熱帯植物館といった比較的大きな熱需要先 東京都のごみ焼却排熱量全体から見 相当大規模なプール、植 量的には との数字

⑦八潮団地への給熱

プラントより熱を供給している。 六施設あり、図―3のように熱供給会社の給熱 校が五校、 品川八潮団地には、住宅が約五千二百戸、学 店舗、 銀行、保育園等業務施設が十

場からの年間熱供給量は約四十テラカロリー、 熱供給設備客量に対する利用率は二二%、 昭和六十三年度の実績を見ると、 大井清掃工 当工

> 場ごみ焼却排熱に対する熱供給量の割合は七% となっている。

⑦光が丘団地への給熱

の形で、給熱プラントに送熱している。 復水する過程で得られる熱を、温水(四五度) 千kW)に通して発電し、タービン出口蒸気を 利用している。即ち、清掃工場のボイラから発 生した蒸気を、先ず工場内の復水タービン (四 八潮団地と異なり図―4のように、発電排熱を 熱プラントへの熱供給は、 昭和六十三年度の実績で、光が丘分工場から 練馬清掃工場光が丘分工場から光が丘団地給 高温水を用いている

である。 ごみ焼却排熱に対する熱供給量の割合は二八% 供給設備客量に対する利用率は四八%、当工場 給熱した熱量は年間約三十三テラカロリー、熱

干 今後の課題

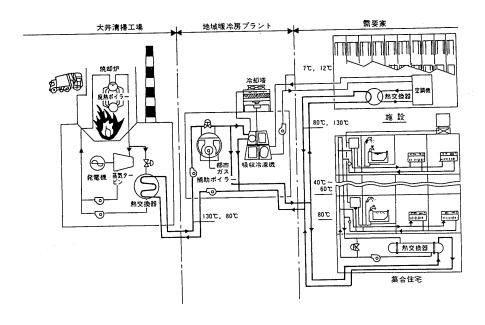
次のように考えられる。 動向、清掃工場の立地条件等を勘案すると、 どみ焼却排熱利用の今後の方向は、 技術開発

0)

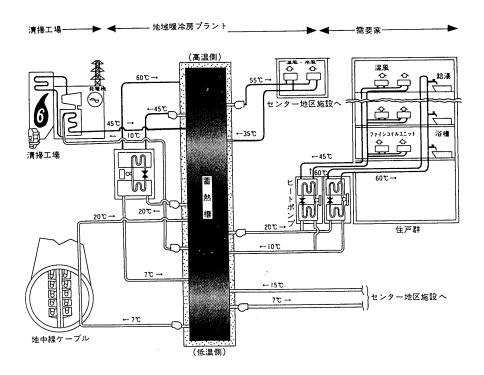
●一ごみ焼却排熱による発電の拡大

である。清掃工場所内使用電力の三倍程度の発 電気は、多用途に使えて扱い易いエネルギー

> でき、電力需要は大きいので、発電に使用可能 電が現状の技術でも可能なことから、 余剰電力を特別なコストなしに需要先まで輸送 が引き取るなら、電力会社の送電線網を通じて 需要先が見込めない場合は、発電は有効な利用 な蒸気すべてを利用できるメリットがある。 方法である。加えて発電電力の余剰を電力会社 大きな埶


課題である。 タービン熱効率を向上させること、等が今後の げることにより、 ③タービン排気復水方式を検討して真空度を**上** 温腐食対策を行ってボイラ蒸気条件を高くする、 五%程度と低いことである。したがって、①高 問題は、総合発電熱効率が最新の設備でも一 タービン熱落差を大きくして

❷─地域熱供給への利用


製造するには、大気圧を少し上回る程度の蒸気 蒸気条件は八㎏/╓Gであり、 造に二重効用吸収式冷凍機を使用したとしても 圧力で十分である。 を利用するものである。ただ、冷房用の冷水製 等の公共施設だけでは熱需要量が小さいことか 熱需要先として、区民センター、温水プール 熱需要の大きい地域冷暖房に清掃工場排熱 九〇度の温水を

場合でも、蒸気を所内使用電力を賄う程度の抽 したがって、熱供給を主体に排熱利用を行う

図一3 品川八潮地域冷暖房給湯システム

図一4 光が丘地域冷暖房給湯システム

25

熱源ということで、給熱単位が低くなることを クアップ熱源が必要となる、④ごみ焼却排熱が 障等で給熱できなくなることがあるため、 設費が高額になる、③清掃工場が定期点検、 なる、②既成市街地に熱供給する場合、 需要密度が小さいため、熱供給区域が広範囲と 掃工場近隣地域は 熱利用上からは有効であると考えられている。 気で冷水、温水製造を行う電熱複合システムが 気タービンで先ず使用し、タービン使用後の蒸 地域熱供給を行う場合の問題点として、 一般に一戸建住宅が多く、熱 配管敷 バッ ① 清 故

模熱需要地と排熱発生源をリンクして熱輸送を

このミスマッチを解決する方策として、 大規

ある。 分は住宅建設事業者の負担で建設されたもので域熱供給が計画されており、熱供給配管の大部域熱、八潮、光が丘団地は、計画当初から地

査の初年度である本年は

おいっそう推進していく所存である。

られる。

事業採算が取れなくなる恐れがある、等が挙げ費用が大きくなるとともに収入が低く抑えられ、熱需要先から期待されること等から、初期投資

❸─都市排熱ネットワークの構築

査

ることにある。東京二十三区で見ると、清掃工おり、いわゆる位置的なミスマッチが生じてい度の高い大規模熱需要先と排熱発生源が離れてきな原因は、熱を効率的に活用できる熱需要密

開発が予定されている東京湾岸地域である。び今後、臨海部副都心を始めとして大規模な再る。これに対し、大規模熱需要地は、都心部及場は区部周辺の内陸部及び湾岸部に点在してい

工場余熱利用推進化調査」を実施している。 用を図るため、 検討を主眼に、清掃工場排熱の積極的な有効利 ネルギーの活用は飛躍的に進むことになる。 きるなら、ごみ焼却排熱を始めとした未利用エ 解決しなければならない問題は多いが、実現で システム等都市施設管路との併設可能性など、 送ルートの選定、大深度地下利用の可否、 行う熱ネットワークの構築が考えられる。 東京都においては、 本年度から三カ年計画で 卸熱供給ネットワークの 「清掃 熱輸 物流 調

④清掃工場における新規熱利用事業の可能性調③清掃工場における熱利用推進化技術の調査②清掃工場発生熱エネルギーの需要先調査①清掃工場における熱利用の現状調査・評価

結果をふまえ、次年度以降の調査フレームを抽を主体に行う考えである。また、本年度の調査ムとの一体化調査

出していく考えである。

を活用し、でみの資源化及び省エネルギーをなた 特に、本年は各種の余熱利用モデルによるケーススタディを行い、その経済効果、政策効果を 、心部等の大規模熱需要地立地モデル」について 熱供給を行う「熱需要地立地モデル」について 熱供給を行う「熱需要地立地モデル」について 地の有効利用及び住民対策上、清掃工場を立地し、土 地の有効利用及び住民対策上、清掃工場の地下 化を含めた検討、また、合築による工場上部空 東京都においては、これらの調査をふまえ、 東京都においては、これらの調査をふまえ、 で成十二年度ベースで約八千テラカロリー) を活用し、でみの資源化及び省エネルギーをな

注

デラカロリー 十億キロカロリーギガカロリー 百万キロカロリー

(2) (1)